Source code for pm4py.filtering

'''
    This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).

    PM4Py is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PM4Py is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PM4Py.  If not, see <https://www.gnu.org/licenses/>.
'''
__doc__ = """
The ``pm4py.filtering`` module contains the filtering features offered in ``pm4py``
"""

from typing import Union, Set, List, Tuple, Collection, Any, Dict, Optional

import pandas as pd

from pm4py.objects.log.obj import EventLog, EventStream
from pm4py.util import constants, xes_constants, pandas_utils
import warnings
from pm4py.util.pandas_utils import check_is_pandas_dataframe, check_pandas_dataframe_columns
from pm4py.utils import get_properties, __event_log_deprecation_warning
from pm4py.objects.ocel.obj import OCEL
import datetime


[docs]def filter_log_relative_occurrence_event_attribute(log: Union[EventLog, pd.DataFrame], min_relative_stake: float, attribute_key : str = xes_constants.DEFAULT_NAME_KEY, level="cases", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]: """ Filters the event log keeping only the events having an attribute value which occurs: - in at least the specified (min_relative_stake) percentage of events, when level="events" - in at least the specified (min_relative_stake) percentage of cases, when level="cases" :param log: event log / Pandas dataframe :param min_relative_stake: minimum percentage of cases (expressed as a number between 0 and 1) in which the attribute should occur. :param attribute_key: the attribute to filter :param level: the level of the filter (if level="events", then events / if level="cases", then cases) :param timestamp_key: attribute to be used for the timestamp :param case_id_key: attribute to be used as case identifier :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe = pm4py.filter_log_relative_occurrence_event_attribute(dataframe, 0.5, level='cases', case_id_key='case:concept:name', timestamp_key='time:timestamp') """ __event_log_deprecation_warning(log) parameters = get_properties(log, timestamp_key=timestamp_key, case_id_key=case_id_key, activity_key=attribute_key) if check_is_pandas_dataframe(log): check_pandas_dataframe_columns(log, timestamp_key=timestamp_key, case_id_key=case_id_key) from pm4py.algo.filtering.pandas.attributes import attributes_filter parameters[attributes_filter.Parameters.ATTRIBUTE_KEY] = attribute_key parameters[attributes_filter.Parameters.KEEP_ONCE_PER_CASE] = True if level == "cases" else False return attributes_filter.filter_df_relative_occurrence_event_attribute(log, min_relative_stake, parameters=parameters) else: from pm4py.algo.filtering.log.attributes import attributes_filter parameters[attributes_filter.Parameters.ATTRIBUTE_KEY] = attribute_key parameters[attributes_filter.Parameters.KEEP_ONCE_PER_CASE] = True if level == "cases" else False return attributes_filter.filter_log_relative_occurrence_event_attribute(log, min_relative_stake, parameters=parameters)
[docs]def filter_start_activities(log: Union[EventLog, pd.DataFrame], activities: Union[Set[str], List[str]], retain: bool = True, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> \ Union[EventLog, pd.DataFrame]: """ Filter cases having a start activity in the provided list :param log: event log / Pandas dataframe :param activities: collection of start activities :param retain: if True, we retain the traces containing the given start activities, if false, we drop the traces :param activity_key: attribute to be used for the activity :param timestamp_key: attribute to be used for the timestamp :param case_id_key: attribute to be used as case identifier :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe = pm4py.filter_start_activities(dataframe, ['Act. A'], activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp') """ __event_log_deprecation_warning(log) parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) if check_is_pandas_dataframe(log): check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) from pm4py.algo.filtering.pandas.start_activities import start_activities_filter parameters[start_activities_filter.Parameters.POSITIVE] = retain return start_activities_filter.apply(log, activities, parameters=parameters) else: from pm4py.algo.filtering.log.start_activities import start_activities_filter parameters[start_activities_filter.Parameters.POSITIVE] = retain return start_activities_filter.apply(log, activities, parameters=parameters)
[docs]def filter_end_activities(log: Union[EventLog, pd.DataFrame], activities: Union[Set[str], List[str]], retain: bool = True, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[ EventLog, pd.DataFrame]: """ Filter cases having an end activity in the provided list :param log: event log / Pandas dataframe :param activities: collection of end activities :param retain: if True, we retain the traces containing the given end activities, if false, we drop the traces :param activity_key: attribute to be used for the activity :param timestamp_key: attribute to be used for the timestamp :param case_id_key: attribute to be used as case identifier :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe = pm4py.filter_end_activities(dataframe, ['Act. Z'], activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp') """ __event_log_deprecation_warning(log) parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) if check_is_pandas_dataframe(log): check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) from pm4py.algo.filtering.pandas.end_activities import end_activities_filter parameters[end_activities_filter.Parameters.POSITIVE] = retain return end_activities_filter.apply(log, activities, parameters=parameters) else: from pm4py.algo.filtering.log.end_activities import end_activities_filter parameters[end_activities_filter.Parameters.POSITIVE] = retain return end_activities_filter.apply(log, activities, parameters=parameters)
[docs]def filter_event_attribute_values(log: Union[EventLog, pd.DataFrame], attribute_key: str, values: Union[Set[str], List[str]], level: str = "case", retain: bool = True, case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]: """ Filter a log object on the values of some event attribute :param log: event log / Pandas dataframe :param attribute_key: attribute to filter :param values: admitted (or forbidden) values :param level: specifies how the filter should be applied ('case' filters the cases where at least one occurrence happens, 'event' filter the events eventually trimming the cases) :param retain: specifies if the values should be kept or removed :param case_id_key: attribute to be used as case identifier :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe = pm4py.filter_event_attribute_values(dataframe, 'concept:name', ['Act. A', 'Act. Z'], case_id_key='case:concept:name') """ __event_log_deprecation_warning(log) parameters = get_properties(log, case_id_key=case_id_key) parameters[constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY] = attribute_key if check_is_pandas_dataframe(log): check_pandas_dataframe_columns(log, case_id_key=case_id_key) from pm4py.algo.filtering.pandas.attributes import attributes_filter if level == "event": parameters[attributes_filter.Parameters.POSITIVE] = retain return attributes_filter.apply_events(log, values, parameters=parameters) elif level == "case": parameters[attributes_filter.Parameters.POSITIVE] = retain return attributes_filter.apply(log, values, parameters=parameters) else: from pm4py.algo.filtering.log.attributes import attributes_filter if level == "event": parameters[attributes_filter.Parameters.POSITIVE] = retain return attributes_filter.apply_events(log, values, parameters=parameters) elif level == "case": parameters[attributes_filter.Parameters.POSITIVE] = retain return attributes_filter.apply(log, values, parameters=parameters)
[docs]def filter_trace_attribute_values(log: Union[EventLog, pd.DataFrame], attribute_key: str, values: Union[Set[str], List[str]], retain: bool = True, case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]: """ Filter a log on the values of a trace attribute :param log: event log / Pandas dataframe :param attribute_key: attribute to filter :param values: collection of values to filter :param retain: boolean value (keep/discard matching traces) :param case_id_key: attribute to be used as case identifier :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe = pm4py.filter_trace_attribute_values(dataframe, 'case:creator', ['Mike'], case_id_key='case:concept:name') """ __event_log_deprecation_warning(log) parameters = get_properties(log, case_id_key=case_id_key) parameters[constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY] = attribute_key if check_is_pandas_dataframe(log): check_pandas_dataframe_columns(log, case_id_key=case_id_key) from pm4py.algo.filtering.pandas.attributes import attributes_filter parameters[attributes_filter.Parameters.POSITIVE] = retain return attributes_filter.apply(log, values, parameters=parameters) else: from pm4py.algo.filtering.log.attributes import attributes_filter parameters[attributes_filter.Parameters.POSITIVE] = retain return attributes_filter.apply_trace_attribute(log, values, parameters=parameters)
[docs]def filter_variants(log: Union[EventLog, pd.DataFrame], variants: Union[Set[str], List[str]], retain: bool = True, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[ EventLog, pd.DataFrame]: """ Filter a log on a specified set of variants :param log: event log / Pandas dataframe :param variants: collection of variants to filter; A variant should be specified as a list of tuples of activity names, e.g., [('a', 'b', 'c')] :param retain: boolean; if True all traces conforming to the specified variants are retained; if False, all those traces are removed :param activity_key: attribute to be used for the activity :param timestamp_key: attribute to be used for the timestamp :param case_id_key: attribute to be used as case identifier :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe = pm4py.filter_variants(dataframe, [('Act. A', 'Act. B', 'Act. Z'), ('Act. A', 'Act. C', 'Act. Z')], activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp') """ __event_log_deprecation_warning(log) from pm4py.util import variants_util parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) if check_is_pandas_dataframe(log): check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) from pm4py.algo.filtering.pandas.variants import variants_filter parameters[variants_filter.Parameters.POSITIVE] = retain return variants_filter.apply(log, variants, parameters=parameters) else: from pm4py.algo.filtering.log.variants import variants_filter parameters[variants_filter.Parameters.POSITIVE] = retain return variants_filter.apply(log, variants, parameters=parameters)
[docs]def filter_directly_follows_relation(log: Union[EventLog, pd.DataFrame], relations: List[str], retain: bool = True, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> \ Union[EventLog, pd.DataFrame]: """ Retain traces that contain any of the specified 'directly follows' relations. For example, if relations == [('a','b'),('a','c')] and log [<a,b,c>,<a,c,b>,<a,d,b>] the resulting log will contain traces describing [<a,b,c>,<a,c,b>]. :param log: event log / Pandas dataframe :param relations: list of activity name pairs, which are allowed/forbidden paths :param retain: parameter that says whether the paths should be kept/removed :param activity_key: attribute to be used for the activity :param timestamp_key: attribute to be used for the timestamp :param case_id_key: attribute to be used as case identifier :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe = pm4py.filter_directly_follows_relation(dataframe, [('A','B'),('A','C')], activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp') """ __event_log_deprecation_warning(log) parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) if check_is_pandas_dataframe(log): from pm4py.algo.filtering.pandas.paths import paths_filter parameters[paths_filter.Parameters.POSITIVE] = retain return paths_filter.apply(log, relations, parameters=parameters) else: from pm4py.algo.filtering.log.paths import paths_filter parameters[paths_filter.Parameters.POSITIVE] = retain return paths_filter.apply(log, relations, parameters=parameters)
[docs]def filter_eventually_follows_relation(log: Union[EventLog, pd.DataFrame], relations: List[str], retain: bool = True, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> \ Union[EventLog, pd.DataFrame]: """ Retain traces that contain any of the specified 'eventually follows' relations. For example, if relations == [('a','b'),('a','c')] and log [<a,b,c>,<a,c,b>,<a,d,b>] the resulting log will contain traces describing [<a,b,c>,<a,c,b>,<a,d,b>]. :param log: event log / Pandas dataframe :param relations: list of activity name pairs, which are allowed/forbidden paths :param retain: parameter that says whether the paths should be kept/removed :param activity_key: attribute to be used for the activity :param timestamp_key: attribute to be used for the timestamp :param case_id_key: attribute to be used as case identifier :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe = pm4py.filter_eventually_follows_relation(dataframe, [('A','B'),('A','C')], activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp') """ __event_log_deprecation_warning(log) parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) if check_is_pandas_dataframe(log): from pm4py.algo.filtering.pandas.ltl import ltl_checker parameters[ltl_checker.Parameters.POSITIVE] = retain if retain: cases = set() else: cases = set(log[case_id_key]) for path in relations: filt_log = ltl_checker.eventually_follows(log, path, parameters=parameters) this_traces = set(filt_log[case_id_key]) if retain: cases = cases.union(this_traces) else: cases = cases.intersection(this_traces) return log[log[case_id_key].isin(cases)] else: from pm4py.algo.filtering.log.ltl import ltl_checker parameters[ltl_checker.Parameters.POSITIVE] = retain if retain: cases = set() else: cases = set(id(trace) for trace in log) for path in relations: filt_log = ltl_checker.eventually_follows(log, path, parameters=parameters) this_traces = set(id(trace) for trace in filt_log) if retain: cases = cases.union(this_traces) else: cases = cases.intersection(this_traces) filtered_log = EventLog(attributes=log.attributes, extensions=log.extensions, omni_present=log.omni_present, classifiers=log.classifiers, properties=log.properties) for trace in log: if id(trace) in cases: filtered_log.append(trace) return filtered_log
[docs]def filter_time_range(log: Union[EventLog, pd.DataFrame], dt1: str, dt2: str, mode="events", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[ EventLog, pd.DataFrame]: """ Filter a log on a time interval :param log: event log / Pandas dataframe :param dt1: left extreme of the interval :param dt2: right extreme of the interval :param mode: modality of filtering (events, traces_contained, traces_intersecting). events: any event that fits the time frame is retained; traces_contained: any trace completely contained in the timeframe is retained; traces_intersecting: any trace intersecting with the time-frame is retained. :param timestamp_key: attribute to be used for the timestamp :param case_id_key: attribute to be used as case identifier :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe1 = pm4py.filter_time_range(dataframe, '2010-01-01 00:00:00', '2011-01-01 00:00:00', mode='traces_contained', case_id_key='case:concept:name', timestamp_key='time:timestamp') filtered_dataframe1 = pm4py.filter_time_range(dataframe, '2010-01-01 00:00:00', '2011-01-01 00:00:00', mode='traces_intersecting', case_id_key='case:concept:name', timestamp_key='time:timestamp') filtered_dataframe1 = pm4py.filter_time_range(dataframe, '2010-01-01 00:00:00', '2011-01-01 00:00:00', mode='events', case_id_key='case:concept:name', timestamp_key='time:timestamp') """ __event_log_deprecation_warning(log) properties = get_properties(log, timestamp_key=timestamp_key, case_id_key=case_id_key) if check_is_pandas_dataframe(log): from pm4py.algo.filtering.pandas.timestamp import timestamp_filter if mode == "events": return timestamp_filter.apply_events(log, dt1, dt2, parameters=properties) elif mode == "traces_contained": return timestamp_filter.filter_traces_contained(log, dt1, dt2, parameters=properties) elif mode == "traces_intersecting": return timestamp_filter.filter_traces_intersecting(log, dt1, dt2, parameters=properties) else: if constants.SHOW_INTERNAL_WARNINGS: warnings.warn('mode provided: ' + mode + ' is not recognized; original log returned!') return log else: from pm4py.algo.filtering.log.timestamp import timestamp_filter if mode == "events": return timestamp_filter.apply_events(log, dt1, dt2, parameters=properties) elif mode == "traces_contained": return timestamp_filter.filter_traces_contained(log, dt1, dt2, parameters=properties) elif mode == "traces_intersecting": return timestamp_filter.filter_traces_intersecting(log, dt1, dt2, parameters=properties) else: if constants.SHOW_INTERNAL_WARNINGS: warnings.warn('mode provided: ' + mode + ' is not recognized; original log returned!') return log
[docs]def filter_between(log: Union[EventLog, pd.DataFrame], act1: str, act2: str, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]: """ Finds all the sub-cases leading from an event with activity "act1" to an event with activity "act2" in the log, and returns a log containing only them. Example: Log A B C D E F A B E F C A B F C B C B E F C act1 = B act2 = C Returned sub-cases: B C (from the first case) B E F C (from the second case) B F C (from the third case) B C (from the third case) B E F C (from the third case) :param log: event log / Pandas dataframe :param act1: source activity :param act2: target activity :param activity_key: attribute to be used for the activity :param timestamp_key: attribute to be used for the timestamp :param case_id_key: attribute to be used as case identifier :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe = pm4py.filter_between(dataframe, 'A', 'D', activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp') """ __event_log_deprecation_warning(log) parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) if check_is_pandas_dataframe(log): check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) from pm4py.algo.filtering.pandas.between import between_filter return between_filter.apply(log, act1, act2, parameters=parameters) else: from pm4py.algo.filtering.log.between import between_filter return between_filter.apply(log, act1, act2, parameters=parameters)
[docs]def filter_case_size(log: Union[EventLog, pd.DataFrame], min_size: int, max_size: int, case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]: """ Filters the event log, keeping the cases having a length (number of events) included between min_size and max_size :param log: event log / Pandas dataframe :param min_size: minimum allowed number of events :param max_size: maximum allowed number of events :param case_id_key: attribute to be used as case identifier :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe = pm4py.filter_case_size(dataframe, 5, 10, case_id_key='case:concept:name') """ __event_log_deprecation_warning(log) parameters = get_properties(log, case_id_key=case_id_key) if check_is_pandas_dataframe(log): check_pandas_dataframe_columns(log, case_id_key=case_id_key) from pm4py.algo.filtering.pandas.cases import case_filter case_id = parameters[ constants.PARAMETER_CONSTANT_CASEID_KEY] if constants.PARAMETER_CONSTANT_CASEID_KEY in parameters else constants.CASE_CONCEPT_NAME return case_filter.filter_on_case_size(log, case_id, min_size, max_size) else: from pm4py.algo.filtering.log.cases import case_filter return case_filter.filter_on_case_size(log, min_size, max_size)
[docs]def filter_case_performance(log: Union[EventLog, pd.DataFrame], min_performance: float, max_performance: float, timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]: """ Filters the event log, keeping the cases having a duration (the timestamp of the last event minus the timestamp of the first event) included between min_performance and max_performance :param log: event log / Pandas dataframe :param min_performance: minimum allowed case duration :param max_performance: maximum allowed case duration :param timestamp_key: attribute to be used for the timestamp :param case_id_key: attribute to be used as case identifier :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe = pm4py.filter_case_performance(dataframe, 3600.0, 86400.0, timestamp_key='time:timestamp', case_id_key='case:concept:name') """ __event_log_deprecation_warning(log) parameters = get_properties(log, timestamp_key=timestamp_key, case_id_key=case_id_key) if check_is_pandas_dataframe(log): check_pandas_dataframe_columns(log, timestamp_key=timestamp_key, case_id_key=case_id_key) from pm4py.algo.filtering.pandas.cases import case_filter return case_filter.filter_case_performance(log, min_performance, max_performance, parameters=parameters) else: from pm4py.algo.filtering.log.cases import case_filter return case_filter.filter_case_performance(log, min_performance, max_performance, parameters=parameters)
[docs]def filter_activities_rework(log: Union[EventLog, pd.DataFrame], activity: str, min_occurrences: int = 2, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]: """ Filters the event log, keeping the cases where the specified activity occurs at least min_occurrences times. :param log: event log / Pandas dataframe :param activity: activity :param min_occurrences: minimum desidered number of occurrences :param activity_key: attribute to be used for the activity :param timestamp_key: attribute to be used for the timestamp :param case_id_key: attribute to be used as case identifier :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe = pm4py.filter_activities_rework(dataframe, 'Approve Order', 2, activity_key='concept:name', timestamp_key='time:timestamp', case_id_key='case:concept:name') """ __event_log_deprecation_warning(log) parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) parameters["min_occurrences"] = min_occurrences if check_is_pandas_dataframe(log): check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) from pm4py.algo.filtering.pandas.rework import rework_filter return rework_filter.apply(log, activity, parameters=parameters) else: from pm4py.algo.filtering.log.rework import rework_filter return rework_filter.apply(log, activity, parameters=parameters)
[docs]def filter_paths_performance(log: Union[EventLog, pd.DataFrame], path: Tuple[str, str], min_performance: float, max_performance: float, keep=True, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]: """ Filters the event log, either: - (keep=True) keeping the cases having the specified path (tuple of 2 activities) with a duration included between min_performance and max_performance - (keep=False) discarding the cases having the specified path with a duration included between min_performance and max_performance :param log: event log / Pandas dataframe :param path: tuple of two activities (source_activity, target_activity) :param min_performance: minimum allowed performance (of the path) :param max_performance: maximum allowed performance (of the path) :param keep: keep/discard the cases having the specified path with a duration included between min_performance and max_performance :param activity_key: attribute to be used for the activity :param timestamp_key: attribute to be used for the timestamp :param case_id_key: attribute to be used as case identifier :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe = pm4py.filter_paths_performance(dataframe, ('A', 'D'), 3600.0, 86400.0, activity_key='concept:name', timestamp_key='time:timestamp', case_id_key='case:concept:name') """ __event_log_deprecation_warning(log) parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) parameters["positive"] = keep parameters["min_performance"] = min_performance parameters["max_performance"] = max_performance path = tuple(path) if check_is_pandas_dataframe(log): check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) from pm4py.algo.filtering.pandas.paths import paths_filter return paths_filter.apply_performance(log, path, parameters=parameters) else: from pm4py.algo.filtering.log.paths import paths_filter return paths_filter.apply_performance(log, path, parameters=parameters)
[docs]def filter_variants_top_k(log: Union[EventLog, pd.DataFrame], k: int, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]: """ Keeps the top-k variants of the log :param log: event log / Pandas dataframe :param k: number of variants that should be kept :param activity_key: attribute to be used for the activity :param timestamp_key: attribute to be used for the timestamp :param case_id_key: attribute to be used as case identifier :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe = pm4py.filter_variants_top_k(dataframe, 5, activity_key='concept:name', timestamp_key='time:timestamp', case_id_key='case:concept:name') """ __event_log_deprecation_warning(log) parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) if check_is_pandas_dataframe(log): check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) from pm4py.algo.filtering.pandas.variants import variants_filter return variants_filter.filter_variants_top_k(log, k, parameters=parameters) else: from pm4py.algo.filtering.log.variants import variants_filter return variants_filter.filter_variants_top_k(log, k, parameters=parameters)
[docs]def filter_variants_by_coverage_percentage(log: Union[EventLog, pd.DataFrame], min_coverage_percentage: float, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]: """ Filters the variants of the log by a coverage percentage (e.g., if min_coverage_percentage=0.4, and we have a log with 1000 cases, of which 500 of the variant 1, 400 of the variant 2, and 100 of the variant 3, the filter keeps only the traces of variant 1 and variant 2). :param log: event log / Pandas dataframe :param min_coverage_percentage: minimum allowed percentage of coverage :param activity_key: attribute to be used for the activity :param timestamp_key: attribute to be used for the timestamp :param case_id_key: attribute to be used as case identifier :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe = pm4py.filter_variants_by_coverage_percentage(dataframe, 0.1, activity_key='concept:name', timestamp_key='time:timestamp', case_id_key='case:concept:name') """ __event_log_deprecation_warning(log) parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) if check_is_pandas_dataframe(log): check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) from pm4py.algo.filtering.pandas.variants import variants_filter return variants_filter.filter_variants_by_coverage_percentage(log, min_coverage_percentage, parameters=parameters) else: from pm4py.algo.filtering.log.variants import variants_filter return variants_filter.filter_variants_by_coverage_percentage(log, min_coverage_percentage, parameters=parameters)
[docs]def filter_variants_by_maximum_coverage_percentage(log: Union[EventLog, pd.DataFrame], max_coverage_percentage: float, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]: """ Filters the variants of the log by a maximum coverage percentage (e.g., if max_coverage_percentage=0.4, and we have a log with 1000 cases, of which 500 of the variant 1, 400 of the variant 2, and 100 of the variant 3, the filter keeps only the traces of variant 2 and variant 3). :param log: event log / Pandas dataframe :param max_coverage_percentage: maximum allowed percentage of coverage :param activity_key: attribute to be used for the activity :param timestamp_key: attribute to be used for the timestamp :param case_id_key: attribute to be used as case identifier :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe = pm4py.filter_variants_by_maximum_coverage_percentage(dataframe, 0.1, activity_key='concept:name', timestamp_key='time:timestamp', case_id_key='case:concept:name') """ if type(log) not in [pd.DataFrame, EventLog, EventStream]: raise Exception("the method can be applied only to a traditional event log!") __event_log_deprecation_warning(log) parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) if check_is_pandas_dataframe(log): check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) from pm4py.algo.filtering.pandas.variants import variants_filter return variants_filter.filter_variants_by_maximum_coverage_percentage(log, max_coverage_percentage, parameters=parameters) else: from pm4py.algo.filtering.log.variants import variants_filter return variants_filter.filter_variants_by_maximum_coverage_percentage(log, max_coverage_percentage, parameters=parameters)
[docs]def filter_prefixes(log: Union[EventLog, pd.DataFrame], activity: str, strict=True, first_or_last="first", activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]: """ Filters the log, keeping the prefixes to a given activity. E.g., for a log with traces: A,B,C,D A,B,Z,A,B,C,D A,B,C,D,C,E,C,F The prefixes to "C" are respectively: A,B A,B,Z,A,B A,B :param log: event log / Pandas dataframe :param activity: target activity of the filter :param strict: applies the filter strictly (cuts the occurrences of the selected activity). :param first_or_last: decides if the first or last occurrence of an activity should be selected as baseline for the filter. :param activity_key: attribute to be used for the activity :param timestamp_key: attribute to be used for the timestamp :param case_id_key: attribute to be used as case identifier :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe = pm4py.filter_prefixes(dataframe, 'Act. C', activity_key='concept:name', timestamp_key='time:timestamp', case_id_key='case:concept:name') """ __event_log_deprecation_warning(log) parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) parameters["strict"] = strict parameters["first_or_last"] = first_or_last if check_is_pandas_dataframe(log): check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) from pm4py.algo.filtering.pandas.prefixes import prefix_filter return prefix_filter.apply(log, activity, parameters=parameters) else: from pm4py.algo.filtering.log.prefixes import prefix_filter return prefix_filter.apply(log, activity, parameters=parameters)
[docs]def filter_suffixes(log: Union[EventLog, pd.DataFrame], activity: str, strict=True, first_or_last="first", activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]: """ Filters the log, keeping the suffixes from a given activity. E.g., for a log with traces: A,B,C,D A,B,Z,A,B,C,D A,B,C,D,C,E,C,F The suffixes from "C" are respectively: D D D,C,E,C,F :param log: event log / Pandas dataframe :param activity: target activity of the filter :param strict: applies the filter strictly (cuts the occurrences of the selected activity). :param first_or_last: decides if the first or last occurrence of an activity should be selected as baseline for the filter. :param activity_key: attribute to be used for the activity :param timestamp_key: attribute to be used for the timestamp :param case_id_key: attribute to be used as case identifier :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe = pm4py.filter_prefixes(dataframe, 'Act. C', activity_key='concept:name', timestamp_key='time:timestamp', case_id_key='case:concept:name') """ __event_log_deprecation_warning(log) parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) parameters["strict"] = strict parameters["first_or_last"] = first_or_last if check_is_pandas_dataframe(log): check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) from pm4py.algo.filtering.pandas.suffixes import suffix_filter return suffix_filter.apply(log, activity, parameters=parameters) else: from pm4py.algo.filtering.log.suffixes import suffix_filter return suffix_filter.apply(log, activity, parameters=parameters)
[docs]def filter_ocel_event_attribute(ocel: OCEL, attribute_key: str, attribute_values: Collection[Any], positive: bool = True) -> OCEL: """ Filters the object-centric event log on the provided event attributes values :param ocel: object-centric event log :param attribute_key: attribute at the event level :param attribute_values: collection of attribute values :param positive: decides if the values should be kept (positive=True) or removed (positive=False) :rtype: ``OCEL`` .. code-block:: python3 import pm4py filtered_ocel = pm4py.filter_ocel_event_attribute(ocel, 'ocel:activity', ['A', 'B', 'D']) """ from pm4py.algo.filtering.ocel import event_attributes return event_attributes.apply(ocel, attribute_values, parameters={event_attributes.Parameters.ATTRIBUTE_KEY: attribute_key, event_attributes.Parameters.POSITIVE: positive})
[docs]def filter_ocel_object_attribute(ocel: OCEL, attribute_key: str, attribute_values: Collection[Any], positive: bool = True) -> OCEL: """ Filters the object-centric event log on the provided object attributes values :param ocel: object-centric event log :param attribute_key: attribute at the event level :param attribute_values: collection of attribute values :param positive: decides if the values should be kept (positive=True) or removed (positive=False) :rtype: ``OCEL`` .. code-block:: python3 import pm4py filtered_ocel = pm4py.filter_ocel_object_attribute(ocel, 'ocel:type', ['order']) """ from pm4py.algo.filtering.ocel import object_attributes return object_attributes.apply(ocel, attribute_values, parameters={object_attributes.Parameters.ATTRIBUTE_KEY: attribute_key, object_attributes.Parameters.POSITIVE: positive})
[docs]def filter_ocel_object_types_allowed_activities(ocel: OCEL, correspondence_dict: Dict[str, Collection[str]]) -> OCEL: """ Filters an object-centric event log keeping only the specified object types with the specified activity set (filters out the rest). :param ocel: object-centric event log :param correspondence_dict: dictionary containing, for every object type of interest, a collection of allowed activities. Example: {"order": ["Create Order"], "element": ["Create Order", "Create Delivery"]} :rtype: ``OCEL`` .. code-block:: python3 import pm4py filtered_ocel = pm4py.filter_ocel_object_types_allowed_activities(ocel, {'order': ['create order', 'pay order'], 'item}) """ from pm4py.algo.filtering.ocel import activity_type_matching return activity_type_matching.apply(ocel, correspondence_dict)
[docs]def filter_ocel_object_per_type_count(ocel: OCEL, min_num_obj_type: Dict[str, int]) -> OCEL: """ Filters the events of the object-centric logs which are related to at least the specified amount of objects per type. E.g. pm4py.filter_object_per_type_count(ocel, {"order": 1, "element": 2}) Would keep the following events: ocel:eid ocel:timestamp ocel:activity ocel:type:element ocel:type:order 0 e1 1980-01-01 Create Order [i4, i1, i3, i2] [o1] 1 e11 1981-01-01 Create Order [i6, i5] [o2] 2 e14 1981-01-04 Create Order [i8, i7] [o3] :param ocel: object-centric event log :param min_num_obj_type: minimum number of objects per type :rtype: ``OCEL`` .. code-block:: python3 import pm4py filtered_ocel = pm4py.filter_ocel_object_per_type_count(ocel, {'order': 1, 'element': 2}) """ from pm4py.algo.filtering.ocel import objects_ot_count return objects_ot_count.apply(ocel, min_num_obj_type)
[docs]def filter_ocel_start_events_per_object_type(ocel: OCEL, object_type: str) -> OCEL: """ Filters the events in which a new object for the given object type is spawn. (E.g. an event with activity "Create Order" might spawn new orders). :param ocel: object-centric event log :param object_type: object type to consider :rtype: ``OCEL`` .. code-block:: python3 import pm4py filtered_ocel = pm4py.filter_ocel_start_events_per_object_type(ocel, 'delivery') """ from pm4py.algo.filtering.ocel import ot_endpoints return ot_endpoints.filter_start_events_per_object_type(ocel, object_type)
[docs]def filter_ocel_end_events_per_object_type(ocel: OCEL, object_type: str) -> OCEL: """ Filters the events in which an object for the given object type terminates its lifecycle. (E.g. an event with activity "Pay Order" might terminate an order). :param ocel: object-centric event log :param object_type: object type to consider :rtype: ``OCEL`` .. code-block:: python3 import pm4py filtered_ocel = pm4py.filter_ocel_end_events_per_object_type(ocel, 'delivery') """ from pm4py.algo.filtering.ocel import ot_endpoints return ot_endpoints.filter_end_events_per_object_type(ocel, object_type)
[docs]def filter_ocel_events_timestamp(ocel: OCEL, min_timest: Union[datetime.datetime, str], max_timest: Union[datetime.datetime, str], timestamp_key: str = "ocel:timestamp") -> OCEL: """ Filters the object-centric event log keeping events in the provided timestamp range :param ocel: object-centric event log :param min_timest: left extreme of the allowed timestamp interval (provided in the format: YYYY-mm-dd HH:MM:SS) :param max_timest: right extreme of the allowed timestamp interval (provided in the format: YYYY-mm-dd HH:MM:SS) :param timestamp_key: the attribute to use as timestamp (default: ocel:timestamp) :rtype: ``OCEL`` .. code-block:: python3 import pm4py filtered_ocel = pm4py.filter_ocel_events_timestamp(ocel, '1990-01-01 00:00:00', '2010-01-01 00:00:00') """ from pm4py.algo.filtering.ocel import event_attributes return event_attributes.apply_timestamp(ocel, min_timest, max_timest, parameters={"pm4py:param:timestamp_key": timestamp_key})
[docs]def filter_four_eyes_principle(log: Union[EventLog, pd.DataFrame], activity1: str, activity2: str, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", resource_key: str = "org:resource") -> Union[EventLog, pd.DataFrame]: """ Filter the cases of the log which violates the four eyes principle on the provided activities. :param log: event log :param activity1: first activity :param activity2: second activity :param activity_key: attribute to be used for the activity :param timestamp_key: attribute to be used for the timestamp :param case_id_key: attribute to be used as case identifier :param resource_key: attribute to be used as resource :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe = pm4py.filter_four_eyes_principle(dataframe, 'Act. A', 'Act. B', activity_key='concept:name', resource_key='org:resource', timestamp_key='time:timestamp', case_id_key='case:concept:name') """ __event_log_deprecation_warning(log) properties = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key, resource_key=resource_key) properties["positive"] = True if check_is_pandas_dataframe(log): check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) from pm4py.algo.filtering.pandas.ltl import ltl_checker return ltl_checker.four_eyes_principle(log, activity1, activity2, parameters=properties) else: from pm4py.algo.filtering.log.ltl import ltl_checker return ltl_checker.four_eyes_principle(log, activity1, activity2, parameters=properties)
[docs]def filter_activity_done_different_resources(log: Union[EventLog, pd.DataFrame], activity: str, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", resource_key: str = "org:resource") -> Union[EventLog, pd.DataFrame]: """ Filters the cases where an activity is repeated by different resources. :param log: event log :param activity: activity to consider :param activity_key: attribute to be used for the activity :param timestamp_key: attribute to be used for the timestamp :param case_id_key: attribute to be used as case identifier :param resource_key: attribute to be used as resource :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py filtered_dataframe = pm4py.filter_activity_done_different_resources(dataframe, 'Act. A', activity_key='concept:name', resource_key='org:resource', timestamp_key='time:timestamp', case_id_key='case:concept:name') """ __event_log_deprecation_warning(log) properties = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key, resource_key=resource_key) if check_is_pandas_dataframe(log): check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) from pm4py.algo.filtering.pandas.ltl import ltl_checker return ltl_checker.attr_value_different_persons(log, activity, parameters=properties) else: from pm4py.algo.filtering.log.ltl import ltl_checker return ltl_checker.attr_value_different_persons(log, activity, parameters=properties)
[docs]def filter_trace_segments(log: Union[EventLog, pd.DataFrame], admitted_traces: List[List[str]], positive: bool = True, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name") -> Union[EventLog, pd.DataFrame]: """ Filters an event log on a set of traces. A trace is a sequence of activities and "...", in which: - a "..." before an activity tells that other activities can precede the given activity - a "..." after an activity tells that other activities can follow the given activity For example: - pm4py.filter_trace_segments(log, [["A", "B"]]) <- filters only the cases of the event log having exactly the process variant A,B - pm4py.filter_trace_segments(log, [["...", "A", "B"]]) <- filters only the cases of the event log ending with the activities A,B - pm4py.filter_trace_segments(log, [["A", "B", "..."]]) <- filters only the cases of the event log starting with the activities A,B - pm4py.filter_trace_segments(log, [["...", "A", "B", "C", "..."], ["...", "D", "E", "F", "..."]] <- filters only the cases of the event log in which at any point there is A followed by B followed by C, and in which at any other point there is D followed by E followed by F :param log: event log / Pandas dataframe :param admitted_traces: collection of traces admitted from the filter (with the aforementioned criteria) :param positive: (boolean) indicates if the filter should keep/discard the cases satisfying the filter :param activity_key: attribute to be used for the activity :param timestamp_key: attribute to be used for the timestamp :param case_id_key: attribute to be used as case identifier :rtype: ``Union[EventLog, pd.DataFrame]`` .. code-block:: python3 import pm4py log = pm4py.read_xes("tests/input_data/running-example.xes") filtered_log = pm4py.filter_trace_segments(log, [["...", "check ticket", "decide", "reinitiate request", "..."]]) print(filtered_log) """ if type(log) not in [pd.DataFrame, EventLog, EventStream]: raise Exception("the method can be applied only to a traditional event log!") __event_log_deprecation_warning(log) parameters = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) parameters["positive"] = positive if check_is_pandas_dataframe(log): check_pandas_dataframe_columns(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) from pm4py.algo.filtering.pandas.traces import trace_filter return trace_filter.apply(log, admitted_traces, parameters=parameters) else: from pm4py.algo.filtering.log.traces import trace_filter return trace_filter.apply(log, admitted_traces, parameters=parameters)
[docs]def filter_ocel_object_types(ocel: OCEL, obj_types: Collection[str], positive: bool = True, level: int = 1) -> OCEL: """ Filters the object types of an object-centric event log. :param ocel: object-centric event log :param obj_types: object types to keep/remove :param positive: boolean value (True=keep, False=remove) :param level: recursively expand the set of object identifiers until the specified level :rtype: ``OCEL`` .. code-block:: python3 import pm4py ocel = pm4py.read_ocel('log.jsonocel') filtered_ocel = pm4py.filter_ocel_object_types(ocel, ['order']) """ from copy import copy from pm4py.objects.ocel.util import filtering_utils if level == 1: filtered_ocel = copy(ocel) if positive: filtered_ocel.objects = filtered_ocel.objects[filtered_ocel.objects[filtered_ocel.object_type_column].isin(obj_types)] else: filtered_ocel.objects = filtered_ocel.objects[~filtered_ocel.objects[filtered_ocel.object_type_column].isin(obj_types)] return filtering_utils.propagate_object_filtering(filtered_ocel) else: object_ids = pandas_utils.format_unique(ocel.objects[ocel.objects[ocel.object_type_column].isin(obj_types)][ocel.object_id_column].unique()) return filter_ocel_objects(ocel, object_ids, level=level, positive=positive)
[docs]def filter_ocel_objects(ocel: OCEL, object_identifiers: Collection[str], positive: bool = True, level: int = 1) -> OCEL: """ Filters the object identifiers of an object-centric event log. :param ocel: object-centric event log :param object_identifiers: object identifiers to keep/remove :param positive: boolean value (True=keep, False=remove) :param level: recursively expand the set of object identifiers until the specified level :rtype: ``OCEL`` .. code-block:: python3 import pm4py ocel = pm4py.read_ocel('log.jsonocel') filtered_ocel = pm4py.filter_ocel_objects(ocel, ['o1'], level=1) """ object_identifiers = set(object_identifiers) if level > 1: ev_rel_obj = ocel.relations.groupby(ocel.event_id_column)[ocel.object_id_column].agg(list).to_dict() objects_ids = ocel.objects[ocel.object_id_column].to_numpy().tolist() graph = {o: set() for o in objects_ids} for ev in ev_rel_obj: rel_obj = ev_rel_obj[ev] for o1 in rel_obj: for o2 in rel_obj: if o1 != o2: graph[o1].add(o2) while level > 1: curr = list(object_identifiers) for el in curr: for el2 in graph[el]: object_identifiers.add(el2) level = level - 1 from copy import copy from pm4py.objects.ocel.util import filtering_utils filtered_ocel = copy(ocel) if positive: filtered_ocel.objects = filtered_ocel.objects[filtered_ocel.objects[filtered_ocel.object_id_column].isin(object_identifiers)] else: filtered_ocel.objects = filtered_ocel.objects[~filtered_ocel.objects[filtered_ocel.object_id_column].isin(object_identifiers)] return filtering_utils.propagate_object_filtering(filtered_ocel)
[docs]def filter_ocel_events(ocel: OCEL, event_identifiers: Collection[str], positive: bool = True) -> OCEL: """ Filters the event identifiers of an object-centric event log. :param ocel: object-centric event log :param event_identifiers: event identifiers to keep/remove :param positive: boolean value (True=keep, False=remove) :rtype: ``OCEL`` .. code-block:: python3 import pm4py ocel = pm4py.read_ocel('log.jsonocel') filtered_ocel = pm4py.filter_ocel_events(ocel, ['e1']) """ from copy import copy from pm4py.objects.ocel.util import filtering_utils filtered_ocel = copy(ocel) if positive: filtered_ocel.events = filtered_ocel.events[filtered_ocel.events[filtered_ocel.event_id_column].isin(event_identifiers)] else: filtered_ocel.events = filtered_ocel.events[~filtered_ocel.events[filtered_ocel.event_id_column].isin(event_identifiers)] return filtering_utils.propagate_event_filtering(filtered_ocel)
[docs]def filter_ocel_cc_object(ocel: OCEL, object_id: str, conn_comp: Optional[List[List[str]]] = None, return_conn_comp: bool = False) -> Union[OCEL, Tuple[OCEL, List[List[str]]]]: """ Returns the connected component of the object-centric event log to which the object with the provided identifier belongs. :param ocel: object-centric event log :param object_id: object identifier :param conn_comp: (optional) connected components of the objects of the OCEL :param return_conn_comp: if True, returns the computed connected components of the OCEL :rtype: ``Union[OCEL, Tuple[OCEL, List[List[str]]]]`` .. code-block:: python3 import pm4py ocel = pm4py.read_ocel('log.jsonocel') filtered_ocel = pm4py.filter_ocel_cc_object(ocel, 'order1') """ if conn_comp is None: from pm4py.algo.transformation.ocel.graphs import object_interaction_graph import networkx as nx g0 = object_interaction_graph.apply(ocel) g = nx.Graph() for edge in g0: g.add_edge(edge[0], edge[1]) conn_comp = list(nx.connected_components(g)) for cc in conn_comp: if object_id in cc: if return_conn_comp: return filter_ocel_objects(ocel, cc), conn_comp else: return filter_ocel_objects(ocel, cc) if return_conn_comp: return filter_ocel_objects(ocel, [object_id]), conn_comp else: return filter_ocel_objects(ocel, [object_id])
[docs]def filter_ocel_cc_length(ocel: OCEL, min_cc_length: int, max_cc_length: int) -> OCEL: """ Keeps only the objects in an OCEL belonging to a connected component with a length falling in a specified range Paper: Adams, Jan Niklas, et al. "Defining cases and variants for object-centric event data." 2022 4th International Conference on Process Mining (ICPM). IEEE, 2022. :param ocel: object-centric event log :param min_cc_length: minimum allowed length for the connected component :param max_cc_length: maximum allowed length for the connected component :rtype: ``OCEL`` .. code-block:: python3 import pm4py ocel = pm4py.read_ocel('log.jsonocel') filtered_ocel = pm4py.filter_ocel_cc_length(ocel, 2, 10) """ from pm4py.algo.transformation.ocel.graphs import object_interaction_graph import networkx as nx g0 = object_interaction_graph.apply(ocel) g = nx.Graph() for edge in g0: g.add_edge(edge[0], edge[1]) conn_comp = list(nx.connected_components(g)) conn_comp = [x for x in conn_comp if min_cc_length <= len(x) <= max_cc_length] objs = [y for x in conn_comp for y in x] return filter_ocel_objects(ocel, objs)
[docs]def filter_ocel_cc_otype(ocel: OCEL, otype: str, positive: bool = True) -> OCEL: """ Filters the objects belonging to the connected components having at least an object of the provided object type. Paper: Adams, Jan Niklas, et al. "Defining cases and variants for object-centric event data." 2022 4th International Conference on Process Mining (ICPM). IEEE, 2022. :param ocel: object-centric event log :param otype: object type :param positive: boolean that keeps or discards the objects of these components :rtype: ``OCEL`` .. code-block:: python3 import pm4py ocel = pm4py.read_ocel('log.jsonocel') filtered_ocel = pm4py.filter_ocel_cc_otype(ocel, 'order') """ if positive: objs = set(ocel.objects[ocel.objects[ocel.object_type_column] == otype][ocel.object_id_column]) else: objs = set(ocel.objects[~(ocel.objects[ocel.object_type_column] == otype)][ocel.object_id_column]) from pm4py.algo.transformation.ocel.graphs import object_interaction_graph import networkx as nx g0 = object_interaction_graph.apply(ocel) g = nx.Graph() for edge in g0: g.add_edge(edge[0], edge[1]) conn_comp = list(nx.connected_components(g)) conn_comp = [x for x in conn_comp if len(set(x).intersection(objs)) > 0] objs = [y for x in conn_comp for y in x] return filter_ocel_objects(ocel, objs)
[docs]def filter_ocel_cc_activity(ocel: OCEL, activity: str) -> OCEL: """ Filters the objects belonging to the connected components having at least an event with the provided activity. Paper: Adams, Jan Niklas, et al. "Defining cases and variants for object-centric event data." 2022 4th International Conference on Process Mining (ICPM). IEEE, 2022. :param ocel: object-centric event log :param activity: activity :rtype: ``OCEL`` .. code-block:: python3 import pm4py ocel = pm4py.read_ocel('log.jsonocel') filtered_ocel = pm4py.filter_ocel_cc_activity(ocel, 'Create Order') """ evs = ocel.events[ocel.events[ocel.event_activity] == activity][ocel.event_id_column].to_numpy().tolist() objs = pandas_utils.format_unique(ocel.relations[ocel.relations[ocel.event_id_column].isin(evs)][ocel.object_id_column].unique()) from pm4py.algo.transformation.ocel.graphs import object_interaction_graph import networkx as nx g0 = object_interaction_graph.apply(ocel) g = nx.Graph() for edge in g0: g.add_edge(edge[0], edge[1]) conn_comp = list(nx.connected_components(g)) conn_comp = [x for x in conn_comp if len(set(x).intersection(objs)) > 0] objs = [y for x in conn_comp for y in x] return filter_ocel_objects(ocel, objs)