pm4py.llm.abstract_log_features#
- pm4py.llm.abstract_log_features(log_obj: Union[DataFrame, EventLog, EventStream], max_len: int = 10000, include_header: bool = True, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') str [source]#
Abstracts the machine learning features obtained from a log (reporting the top features until the desired length is obtained)
- Parameters:
log_obj – log object
max_len (
int
) – maximum length of the (string) abstractionactivity_key (
str
) – the column to be used as activitytimestamp_key (
str
) – the column to be used as timestampcase_id_key (
str
) – the column to be used as case identifier
- Return type:
str
import pm4py log = pm4py.read_xes("tests/input_data/roadtraffic100traces.xes") print(pm4py.llm.abstract_log_features(log))