Source code for pm4py.visualization.sna.variants.networkx

    This file is part of PM4Py (More Info:

    PM4Py is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PM4Py is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PM4Py.  If not, see <>.
import shutil
import tempfile
from copy import copy
from enum import Enum

import matplotlib
import numpy as np

from pm4py.util import exec_utils, vis_utils

[docs]class Parameters(Enum): WEIGHT_THRESHOLD = "weight_threshold" FORMAT = "format"
[docs]def get_temp_file_name(format): """ Gets a temporary file name for the image Parameters ------------ format Format of the target image """ filename = tempfile.NamedTemporaryFile(suffix='.' + format) return
[docs]def apply(metric_values, parameters=None): """ Perform SNA visualization starting from the Matrix Container object and the Resource-Resource matrix Parameters ------------- metric_values Value of the metrics parameters Possible parameters of the algorithm, including: - Parameters.WEIGHT_THRESHOLD -> the weight threshold to use in displaying the graph - Parameters.FORMAT -> format of the output image (png, svg ...) Returns ------------- temp_file_name Name of a temporary file where the visualization is placed """ import networkx as nx if parameters is None: parameters = {} weight_threshold = exec_utils.get_param_value(Parameters.WEIGHT_THRESHOLD, parameters, 0) format = exec_utils.get_param_value(Parameters.FORMAT, parameters, "png") directed = metric_values[2] temp_file_name = get_temp_file_name(format) rows, cols = np.where(metric_values[0] > weight_threshold) edges = zip(rows.tolist(), cols.tolist()) if directed: graph = nx.DiGraph() else: graph = nx.Graph() labels = {} nodes = [] for index, item in enumerate(metric_values[1]): labels[index] = item nodes.append(index) graph.add_nodes_from(nodes) graph.add_edges_from(edges) current_backend = copy(matplotlib.get_backend()) matplotlib.use('Agg') from matplotlib import pyplot pyplot.clf() nx.draw(graph, with_labels=True, labels=labels, node_size=500, pos=nx.circular_layout(graph)) pyplot.savefig(temp_file_name, bbox_inches="tight") pyplot.clf() matplotlib.use(current_backend) return temp_file_name
[docs]def view(temp_file_name, parameters=None): """ View the SNA visualization on the screen Parameters ------------- temp_file_name Temporary file name parameters Possible parameters of the algorithm """ if parameters is None: parameters = {} if vis_utils.check_visualization_inside_jupyter(): vis_utils.view_image_in_jupyter(temp_file_name) else: vis_utils.open_opsystem_image_viewer(temp_file_name)
[docs]def save(temp_file_name, dest_file, parameters=None): """ Save the SNA visualization from a temporary file to a well-defined destination file Parameters ------------- temp_file_name Temporary file name dest_file Destination file parameters Possible parameters of the algorithm """ if parameters is None: parameters = {} shutil.copyfile(temp_file_name, dest_file)