Source code for pm4py.algo.conformance.footprints.variants.trace_extensive

'''
    This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).

    PM4Py is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PM4Py is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PM4Py.  If not, see <https://www.gnu.org/licenses/>.
'''
from enum import Enum
from pm4py.util import exec_utils, xes_constants, constants
from typing import Optional, Dict, Any, Union, Tuple, List, Set
from pm4py.objects.log.obj import EventLog
import pandas as pd


[docs]class Outputs(Enum): DFG = "dfg" SEQUENCE = "sequence" PARALLEL = "parallel" START_ACTIVITIES = "start_activities" END_ACTIVITIES = "end_activities" ACTIVITIES = "activities" SKIPPABLE = "skippable" ACTIVITIES_ALWAYS_HAPPENING = "activities_always_happening" MIN_TRACE_LENGTH = "min_trace_length" TRACE = "trace"
[docs]class Parameters(Enum): CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY ENABLE_ACT_ALWAYS_EXECUTED = "enable_act_always_executed"
[docs]class ConfOutputs(Enum): FOOTPRINTS = "footprints" START_ACTIVITIES = "start_activities" END_ACTIVITIES = "end_activities" ACTIVITIES_ALWAYS_HAPPENING = "activities_always_happening" MIN_LENGTH_FIT = "min_length_fit" IS_FOOTPRINTS_FIT = "is_footprints_fit"
[docs]def apply(log_footprints: List[Dict[str, Any]], model_footprints: Dict[str, Any], parameters: Optional[Dict[Union[str, Parameters], Any]] = None) -> List[Dict[str, Any]]: """ Apply footprints conformance between a log footprints object and a model footprints object Parameters ----------------- log_footprints Footprints of the log (trace-by-trace) model_footprints Footprints of the model parameters Parameters of the algorithm Returns ------------------ violations List containing, for each trace, a dictionary containing the violations """ if parameters is None: parameters = {} if not type(log_footprints) is list: raise Exception( "it is possible to apply this variant only on trace-by-trace footprints, not overall log footprints!") conf_traces = {} enable_act_always_executed = exec_utils.get_param_value(Parameters.ENABLE_ACT_ALWAYS_EXECUTED, parameters, True) model_configurations = model_footprints[Outputs.SEQUENCE.value].union(model_footprints[Outputs.PARALLEL.value]) ret = [] for tr in log_footprints: trace = tr[Outputs.TRACE.value] if trace in conf_traces: ret.append(conf_traces[trace]) else: trace_configurations = tr[Outputs.SEQUENCE.value].union(tr[Outputs.PARALLEL.value]) trace_violations = {} trace_violations[ConfOutputs.FOOTPRINTS.value] = set( x for x in trace_configurations if x not in model_configurations) trace_violations[ConfOutputs.START_ACTIVITIES.value] = set(x for x in tr[Outputs.START_ACTIVITIES.value] if x not in model_footprints[ Outputs.START_ACTIVITIES.value]) if Outputs.START_ACTIVITIES.value in model_footprints else set() trace_violations[ConfOutputs.END_ACTIVITIES.value] = set( x for x in tr[Outputs.END_ACTIVITIES.value] if x not in model_footprints[ Outputs.END_ACTIVITIES.value]) if Outputs.END_ACTIVITIES.value in model_footprints else set() trace_violations[ConfOutputs.ACTIVITIES_ALWAYS_HAPPENING.value] = set( x for x in model_footprints[Outputs.ACTIVITIES_ALWAYS_HAPPENING.value] if x not in tr[ Outputs.ACTIVITIES.value]) if Outputs.ACTIVITIES_ALWAYS_HAPPENING.value in model_footprints and enable_act_always_executed else set() trace_violations[ConfOutputs.MIN_LENGTH_FIT.value] = tr[Outputs.MIN_TRACE_LENGTH.value] >= model_footprints[ Outputs.MIN_TRACE_LENGTH.value] if Outputs.MIN_TRACE_LENGTH.value in tr and Outputs.MIN_TRACE_LENGTH.value in model_footprints else True trace_violations[ConfOutputs.IS_FOOTPRINTS_FIT.value] = len( trace_violations[ConfOutputs.FOOTPRINTS.value]) == 0 and len( trace_violations[ConfOutputs.START_ACTIVITIES.value]) == 0 and len( trace_violations[ConfOutputs.END_ACTIVITIES.value]) == 0 and len( trace_violations[ConfOutputs.ACTIVITIES_ALWAYS_HAPPENING.value]) == 0 and trace_violations[ ConfOutputs.MIN_LENGTH_FIT.value] ret.append(trace_violations) conf_traces[trace] = trace_violations return ret
[docs]def get_diagnostics_dataframe(log: EventLog, conf_result: List[Dict[str, Any]], parameters: Optional[Dict[Union[str, Parameters], Any]] = None) -> pd.DataFrame: """ Gets the diagnostics dataframe from the log and the results of footprints conformance checking (trace-by-trace) Parameters -------------- log Event log conf_result Conformance checking results (trace-by-trace) Returns -------------- diagn_dataframe Diagnostics dataframe """ if parameters is None: parameters = {} case_id_key = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, xes_constants.DEFAULT_TRACEID_KEY) import pandas as pd diagn_stream = [] for index in range(len(log)): case_id = log[index].attributes[case_id_key] is_fit = conf_result[index][ConfOutputs.IS_FOOTPRINTS_FIT.value] footprints_violations = len(conf_result[index][ConfOutputs.FOOTPRINTS.value]) start_activities_violations = len(conf_result[index][ConfOutputs.START_ACTIVITIES.value]) end_activities_violations = len(conf_result[index][ConfOutputs.END_ACTIVITIES.value]) act_always_happening_violations = len(conf_result[index][ConfOutputs.ACTIVITIES_ALWAYS_HAPPENING.value]) min_length_fit = conf_result[index][ConfOutputs.MIN_LENGTH_FIT.value] diagn_stream.append({"case_id": case_id, "is_fit": is_fit, "footprints_violations": footprints_violations, "start_activities_violations": start_activities_violations, "end_activities_violations": end_activities_violations, "act_always_happening_violations": act_always_happening_violations, "min_length_fit": min_length_fit}) return pd.DataFrame(diagn_stream)