pm4py.objects.conversion.wf_net.variants package

Submodules

pm4py.objects.conversion.wf_net.variants.to_bpmn module

pm4py.objects.conversion.wf_net.variants.to_bpmn.apply(net, im, fm, parameters=None)[source]

Converts an accepting Petri net into a BPMN diagram

Parameters
  • accepting_petri_net – Accepting Petri net (list containing net + im + fm)

  • parameters – Parameters of the algorithm

Returns

BPMN diagram

Return type

bpmn_graph

pm4py.objects.conversion.wf_net.variants.to_process_tree module

class pm4py.objects.conversion.wf_net.variants.to_process_tree.Parameters(value)[source]

Bases: enum.Enum

An enumeration.

DEBUG = 'debug'
FOLD = 'fold'
pm4py.objects.conversion.wf_net.variants.to_process_tree.apply(net, im, fm, parameters=None)[source]

Transforms a WF-net to a process tree

Parameters
  • net – Petri net

  • im – Initial marking

  • fm – Final marking

Returns

Process tree

Return type

tree

pm4py.objects.conversion.wf_net.variants.to_process_tree.binary_choice_detection(net)[source]
pm4py.objects.conversion.wf_net.variants.to_process_tree.binary_concurrency_detection(net)[source]
pm4py.objects.conversion.wf_net.variants.to_process_tree.binary_loop_detection(net)[source]
pm4py.objects.conversion.wf_net.variants.to_process_tree.binary_sequence_detection(net)[source]
pm4py.objects.conversion.wf_net.variants.to_process_tree.choice_requirement(t1, t2)[source]
pm4py.objects.conversion.wf_net.variants.to_process_tree.concurrent_requirement(t1, t2)[source]
pm4py.objects.conversion.wf_net.variants.to_process_tree.generate_label_for_transition(t)[source]
pm4py.objects.conversion.wf_net.variants.to_process_tree.generate_new_binary_transition(t1, t2, operator, net)[source]
pm4py.objects.conversion.wf_net.variants.to_process_tree.group_blocks_in_net(net, parameters=None)[source]

Groups the blocks in the Petri net

Parameters
  • net – Petri net

  • parameters – Parameters of the algorithm

Returns

Petri net (blocks are grouped according to the algorithm)

Return type

grouped_net

pm4py.objects.conversion.wf_net.variants.to_process_tree.loop_requirement(t1, t2)[source]
pm4py.objects.conversion.wf_net.variants.to_process_tree.sequence_requirement(t1, t2)[source]

Module contents